direct product, metabelian, soluble, monomial, A-group
Aliases: C2×C33⋊C4, C6⋊(C32⋊C4), C3⋊S3.5D6, C33⋊3(C2×C4), C3⋊S3⋊3Dic3, (C32×C6)⋊2C4, (C3×C6)⋊3Dic3, C32⋊4(C2×Dic3), (C3×C3⋊S3)⋊5C4, C3⋊2(C2×C32⋊C4), (C2×C3⋊S3).3S3, (C6×C3⋊S3).5C2, (C3×C3⋊S3).8C22, SmallGroup(216,169)
Series: Derived ►Chief ►Lower central ►Upper central
C1 — C3 — C33 — C3×C3⋊S3 — C33⋊C4 — C2×C33⋊C4 |
C33 — C2×C33⋊C4 |
Generators and relations for C2×C33⋊C4
G = < a,b,c,d,e | a2=b3=c3=d3=e4=1, ab=ba, ac=ca, ad=da, ae=ea, bc=cb, bd=db, ebe-1=bc-1, cd=dc, ece-1=b-1c-1, ede-1=d-1 >
Subgroups: 308 in 60 conjugacy classes, 17 normal (15 characteristic)
C1, C2, C2, C3, C3, C4, C22, S3, C6, C6, C2×C4, C32, C32, Dic3, D6, C2×C6, C3×S3, C3⋊S3, C3×C6, C3×C6, C2×Dic3, C33, C32⋊C4, S3×C6, C2×C3⋊S3, C3×C3⋊S3, C32×C6, C2×C32⋊C4, C33⋊C4, C6×C3⋊S3, C2×C33⋊C4
Quotients: C1, C2, C4, C22, S3, C2×C4, Dic3, D6, C2×Dic3, C32⋊C4, C2×C32⋊C4, C33⋊C4, C2×C33⋊C4
Character table of C2×C33⋊C4
class | 1 | 2A | 2B | 2C | 3A | 3B | 3C | 3D | 3E | 3F | 3G | 4A | 4B | 4C | 4D | 6A | 6B | 6C | 6D | 6E | 6F | 6G | 6H | 6I | |
size | 1 | 1 | 9 | 9 | 2 | 4 | 4 | 4 | 4 | 4 | 4 | 27 | 27 | 27 | 27 | 2 | 4 | 4 | 4 | 4 | 4 | 4 | 18 | 18 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | -1 | linear of order 2 |
ρ3 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | -1 | linear of order 2 |
ρ4 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ5 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -i | -i | i | i | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | linear of order 4 |
ρ6 | 1 | -1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | i | -i | -i | i | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | linear of order 4 |
ρ7 | 1 | -1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -i | i | i | -i | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | linear of order 4 |
ρ8 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | i | i | -i | -i | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | linear of order 4 |
ρ9 | 2 | 2 | 2 | 2 | -1 | -1 | -1 | -1 | 2 | 2 | -1 | 0 | 0 | 0 | 0 | -1 | 2 | -1 | -1 | 2 | -1 | -1 | -1 | -1 | orthogonal lifted from S3 |
ρ10 | 2 | -2 | -2 | 2 | -1 | -1 | -1 | -1 | 2 | 2 | -1 | 0 | 0 | 0 | 0 | 1 | -2 | 1 | 1 | -2 | 1 | 1 | -1 | 1 | orthogonal lifted from D6 |
ρ11 | 2 | 2 | -2 | -2 | -1 | -1 | -1 | -1 | 2 | 2 | -1 | 0 | 0 | 0 | 0 | -1 | 2 | -1 | -1 | 2 | -1 | -1 | 1 | 1 | symplectic lifted from Dic3, Schur index 2 |
ρ12 | 2 | -2 | 2 | -2 | -1 | -1 | -1 | -1 | 2 | 2 | -1 | 0 | 0 | 0 | 0 | 1 | -2 | 1 | 1 | -2 | 1 | 1 | 1 | -1 | symplectic lifted from Dic3, Schur index 2 |
ρ13 | 4 | 4 | 0 | 0 | 4 | 1 | -2 | -2 | -2 | 1 | 1 | 0 | 0 | 0 | 0 | 4 | -2 | -2 | -2 | 1 | 1 | 1 | 0 | 0 | orthogonal lifted from C32⋊C4 |
ρ14 | 4 | 4 | 0 | 0 | 4 | -2 | 1 | 1 | 1 | -2 | -2 | 0 | 0 | 0 | 0 | 4 | 1 | 1 | 1 | -2 | -2 | -2 | 0 | 0 | orthogonal lifted from C32⋊C4 |
ρ15 | 4 | -4 | 0 | 0 | 4 | 1 | -2 | -2 | -2 | 1 | 1 | 0 | 0 | 0 | 0 | -4 | 2 | 2 | 2 | -1 | -1 | -1 | 0 | 0 | orthogonal lifted from C2×C32⋊C4 |
ρ16 | 4 | -4 | 0 | 0 | 4 | -2 | 1 | 1 | 1 | -2 | -2 | 0 | 0 | 0 | 0 | -4 | -1 | -1 | -1 | 2 | 2 | 2 | 0 | 0 | orthogonal lifted from C2×C32⋊C4 |
ρ17 | 4 | 4 | 0 | 0 | -2 | 1 | -1+3√-3/2 | -1-3√-3/2 | 1 | -2 | 1 | 0 | 0 | 0 | 0 | -2 | 1 | -1-3√-3/2 | -1+3√-3/2 | -2 | 1 | 1 | 0 | 0 | complex lifted from C33⋊C4 |
ρ18 | 4 | -4 | 0 | 0 | -2 | 1 | -1-3√-3/2 | -1+3√-3/2 | 1 | -2 | 1 | 0 | 0 | 0 | 0 | 2 | -1 | 1-3√-3/2 | 1+3√-3/2 | 2 | -1 | -1 | 0 | 0 | complex faithful |
ρ19 | 4 | 4 | 0 | 0 | -2 | -1+3√-3/2 | 1 | 1 | -2 | 1 | -1-3√-3/2 | 0 | 0 | 0 | 0 | -2 | -2 | 1 | 1 | 1 | -1-3√-3/2 | -1+3√-3/2 | 0 | 0 | complex lifted from C33⋊C4 |
ρ20 | 4 | -4 | 0 | 0 | -2 | -1-3√-3/2 | 1 | 1 | -2 | 1 | -1+3√-3/2 | 0 | 0 | 0 | 0 | 2 | 2 | -1 | -1 | -1 | 1-3√-3/2 | 1+3√-3/2 | 0 | 0 | complex faithful |
ρ21 | 4 | 4 | 0 | 0 | -2 | -1-3√-3/2 | 1 | 1 | -2 | 1 | -1+3√-3/2 | 0 | 0 | 0 | 0 | -2 | -2 | 1 | 1 | 1 | -1+3√-3/2 | -1-3√-3/2 | 0 | 0 | complex lifted from C33⋊C4 |
ρ22 | 4 | -4 | 0 | 0 | -2 | -1+3√-3/2 | 1 | 1 | -2 | 1 | -1-3√-3/2 | 0 | 0 | 0 | 0 | 2 | 2 | -1 | -1 | -1 | 1+3√-3/2 | 1-3√-3/2 | 0 | 0 | complex faithful |
ρ23 | 4 | 4 | 0 | 0 | -2 | 1 | -1-3√-3/2 | -1+3√-3/2 | 1 | -2 | 1 | 0 | 0 | 0 | 0 | -2 | 1 | -1+3√-3/2 | -1-3√-3/2 | -2 | 1 | 1 | 0 | 0 | complex lifted from C33⋊C4 |
ρ24 | 4 | -4 | 0 | 0 | -2 | 1 | -1+3√-3/2 | -1-3√-3/2 | 1 | -2 | 1 | 0 | 0 | 0 | 0 | 2 | -1 | 1+3√-3/2 | 1-3√-3/2 | 2 | -1 | -1 | 0 | 0 | complex faithful |
(1 5)(2 6)(3 7)(4 8)(9 19)(10 20)(11 17)(12 18)(13 24)(14 21)(15 22)(16 23)
(1 21 20)(2 22 17)(3 18 23)(4 19 24)(5 14 10)(6 15 11)(7 12 16)(8 9 13)
(2 17 22)(4 24 19)(6 11 15)(8 13 9)
(1 21 20)(2 17 22)(3 23 18)(4 19 24)(5 14 10)(6 11 15)(7 16 12)(8 9 13)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)
G:=sub<Sym(24)| (1,5)(2,6)(3,7)(4,8)(9,19)(10,20)(11,17)(12,18)(13,24)(14,21)(15,22)(16,23), (1,21,20)(2,22,17)(3,18,23)(4,19,24)(5,14,10)(6,15,11)(7,12,16)(8,9,13), (2,17,22)(4,24,19)(6,11,15)(8,13,9), (1,21,20)(2,17,22)(3,23,18)(4,19,24)(5,14,10)(6,11,15)(7,16,12)(8,9,13), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)>;
G:=Group( (1,5)(2,6)(3,7)(4,8)(9,19)(10,20)(11,17)(12,18)(13,24)(14,21)(15,22)(16,23), (1,21,20)(2,22,17)(3,18,23)(4,19,24)(5,14,10)(6,15,11)(7,12,16)(8,9,13), (2,17,22)(4,24,19)(6,11,15)(8,13,9), (1,21,20)(2,17,22)(3,23,18)(4,19,24)(5,14,10)(6,11,15)(7,16,12)(8,9,13), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24) );
G=PermutationGroup([[(1,5),(2,6),(3,7),(4,8),(9,19),(10,20),(11,17),(12,18),(13,24),(14,21),(15,22),(16,23)], [(1,21,20),(2,22,17),(3,18,23),(4,19,24),(5,14,10),(6,15,11),(7,12,16),(8,9,13)], [(2,17,22),(4,24,19),(6,11,15),(8,13,9)], [(1,21,20),(2,17,22),(3,23,18),(4,19,24),(5,14,10),(6,11,15),(7,16,12),(8,9,13)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24)]])
G:=TransitiveGroup(24,553);
C2×C33⋊C4 is a maximal subgroup of
Dic3×C32⋊C4 D6⋊(C32⋊C4) C33⋊(C4⋊C4) C3⋊S3.2D12 S32⋊Dic3 C33⋊C4⋊C4 C6.PSU3(𝔽2) C6.2PSU3(𝔽2) C33⋊9(C4⋊C4) C62⋊11Dic3 C2×S3×C32⋊C4
C2×C33⋊C4 is a maximal quotient of
C33⋊7(C2×C8) C33⋊4M4(2) C33⋊9(C4⋊C4) C33⋊12M4(2) C62⋊11Dic3
Matrix representation of C2×C33⋊C4 ►in GL4(𝔽7) generated by
6 | 0 | 0 | 0 |
0 | 6 | 0 | 0 |
0 | 0 | 6 | 0 |
0 | 0 | 0 | 6 |
5 | 3 | 5 | 3 |
3 | 5 | 2 | 3 |
0 | 0 | 1 | 0 |
0 | 0 | 0 | 4 |
0 | 5 | 2 | 6 |
0 | 2 | 0 | 2 |
3 | 3 | 6 | 1 |
0 | 0 | 0 | 4 |
3 | 6 | 3 | 2 |
6 | 3 | 4 | 2 |
0 | 0 | 2 | 0 |
0 | 0 | 0 | 4 |
0 | 3 | 2 | 0 |
2 | 3 | 4 | 2 |
5 | 2 | 1 | 6 |
2 | 2 | 6 | 3 |
G:=sub<GL(4,GF(7))| [6,0,0,0,0,6,0,0,0,0,6,0,0,0,0,6],[5,3,0,0,3,5,0,0,5,2,1,0,3,3,0,4],[0,0,3,0,5,2,3,0,2,0,6,0,6,2,1,4],[3,6,0,0,6,3,0,0,3,4,2,0,2,2,0,4],[0,2,5,2,3,3,2,2,2,4,1,6,0,2,6,3] >;
C2×C33⋊C4 in GAP, Magma, Sage, TeX
C_2\times C_3^3\rtimes C_4
% in TeX
G:=Group("C2xC3^3:C4");
// GroupNames label
G:=SmallGroup(216,169);
// by ID
G=gap.SmallGroup(216,169);
# by ID
G:=PCGroup([6,-2,-2,-2,-3,3,-3,24,963,111,964,376,5189]);
// Polycyclic
G:=Group<a,b,c,d,e|a^2=b^3=c^3=d^3=e^4=1,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,b*c=c*b,b*d=d*b,e*b*e^-1=b*c^-1,c*d=d*c,e*c*e^-1=b^-1*c^-1,e*d*e^-1=d^-1>;
// generators/relations
Export